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Water waves and Korteweg-de Vries equations 
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(Received 24 April 1979 and in revised form 16 July 1979) 

The classical problem of water waves on an incompressible irrotational flow is con- 
sidered. By introducing an appropriate non-dimensionalization, we derive four 
Korteweg-de Vries equations: two expressed in Cartesian co-ordinates and two in 
plane polars. The equations are: the classical (plane) KdV equation, the two-dimen- 
sional ‘ nearly-plane ’ equation, the concentric equation and a new ‘ nearly-concentric ’ 
equation. On the basis of the underlying water-wave equations, it is seen that two 
simple transformations exist between these KdV equations. 

By constructing appropriate asymptotic regions defined in terms of the relevant 
small parameters, we show how various initial value problems give rise to certain 
solutions of the KdV equations. I n  particular, the generation of the similarity solutions 
is examined in detail and it is found that these solutions must eventually match to a 
solution of the full water-wave equations in a neighbourhood of the origin. 

1. Introduction 

Korteweg-de Vries (KdV) equation, 
I n  the last two or three years, the interest that was originally centred around the 

(1.1) 

has broadened to  the consideration of similar equations in higher dimensions and 
different co-ordinate systems. Of course, the inverse scattering transform has also 
played an important role in this extension, but rather by starting from a generaliza- 
tion of the solution technique itself. Armed with a new approach, it is then possible to 
seek equations which can be solved and which, it is to be hoped, will also prove to be 
useful. Here, we are particularly interested in the various ‘Korteweg-de Vries ’ equa- 
tions that arise from the classical water-wave problem. By deriving all the equations - 
we discuss four - from the same type of problem, it is possible to examine, for example, 
transformations between the equations. Further, we can also discuss the forms of 
initial data required to produce specific solutions of the equations. In  this way we hope 
to present a fairly comprehensive account of the role of weak nonlinearity and dis- 
persion in water waves, for various co-ordinate configurations. 

In  1895, Korteweg & de Vries gave the first derivation of the equation named after 
them, essentially by balancing weak nonlinearity against weak (linear) dispersion. 
Actually, this idea was not new, for the solitary wave had been the subject of discussion 
for quite a few years (see Russell 1844; Boussinesq 187 1 ; Rayleigh 1876). However, the 

t We express the equations in a simple form in the introduction : a specific interpretation is 
not implied by the symbols. Throughout, subscripts denote partial derivatives. 

Ut f uu, + u,,, = o,t  
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amazing properties of the classical MdV equation remained unnoticed until the early 
fifties when some related numerical work a t  Los Alamos produced rather surprising 
results (Fermi, Pasta & Ulam 1955). This led eventually to the pioneering work by the 
group a t  Princeton in the middle sixties (e.g. Gardner et al. 1974), after which the in- 
verse scattering transform became well-established with very wide applications and 
generalizations. Once the KdV equation (and other equations) in one space dimension 
were understood and solved, the search for equations in two (or more) space dimen- 
sions began. For example, the two-dimensional KdV equation, 

(1.2) (Ut + uu, + u,,,), + uyy = 0, 
first seems to  have appeared in 1970 (Kndomtsev & Petviashvili), and the inverse 
scattering transform for this equation is due to  Dryuma (1974) (see also Zakharov & 
Shabat 1974). (Since the y dependence in the original problem must be ‘weak’ for this 
equation to be valid, as we shall see, we prefer to call i t  the ‘nearly-plane’ KdV 
equation. ) 

The equation for purely concentric waves was first written down by Maxon & 
Viecelli (1974), 

(1.3) 

and discussed a t  some length by Miles (1978a) in the context of the water-wave 
problem. A general inverse-scattering technique for the concentric KdV equation has 
been developed by Calogero & Degasperis (1978), but details of specific solutions are 
not given (and construction of similarity solutions is not straightforward). I n  fact, an 
inverse transform can be obtained directly from that for the nearly-plane KdV 
equation (Johnson 1979), and some special results for the nearly-plane equation 
appear in the work of Johnson & Thompson (1 978) ; we shall discuss the connexion 
between nearly-plane and concentric KdV equations in due course. As the plane KdV 
equation can be extended to  the nearly-plane, so the concentric equation can be 
generalized to 

2u, + u/r  + uu, + u,,, = 0, 

1 1 
( 2 u j - f ~ u + u ~ ~ + ~ ~ ~ ~  Iz +f2u$@ = 0. (1.4) 

This new equation we shall call the nearly-concentric KdV equation, in accord with 
our previous convention ; the derivation will be given later. 

I n  this paper we shall outline the derivation of these four KdV equations, paying 
particular attention to the scalings required to produce each one. These scalings 
suggest the existence of transformations between the equations, and this is confirmed. 
Also, in order to  relate various solutions to specific initial data, we discuss the form of 
the matching problem for small times. This proves to be rather elementary for one class 
of solutions, but not for the similarity solutions. The matching of the similarity solu- 
tions is considered in some detail, placing emphasis on the various regions of validity 
(measured in terms of the relevant small parameter). This, therefore, extends the 
work of Miles (1978a) and, further, we match for arbitrary amplitude of the similarity 
solutions. (A careful examination of the calculation due to Miles shows that matching 
was performed only for the amplitude tending to zero.) 

The similarity solutions used here are not all new: see, for example, Berezin & 
Karpman( 1964);Miles (1978a,b); Rosales(1978); Ablowitz & Segur(1977a). However, 
for the concentric problem we find two similarity solutions both of which are matched 
to an appropriate linear r6gime. One is just the classical form given by the Painlev6 
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equation, and used by Miles ( 1 9 7 8 ~ ) ;  the second is a new solution which can be ex- 
pressed in closed form and was obtained directly from the inverse scattering trans- 
form (Johnson & Thompson 1978). We find that, in terms of the linear matched prob- 
lem, there is a very simple relation between the two similarity solutions. 

2. Derivation of the KdV equations 
We sbart from the classical water-wave problem that is, an incompressible irrota- 

tional fluid bounded above by a free surface and below by a rigid horizontal surface. 
The fluid extends to  infinity in all horizontal directions and the free surface is charac- 
terized by the simplest of conditions, namely constant pressure. In  the absence of any 
disturbances, the fluid will be stationary with a constant depth d. To write down an 
appropriate non-dimensional problem, i t  is convenient to introduce a typical hori- 
zontal scale, I, which may be interpreted as a wavelength of the surface disturbance. 
Thus, using d ,  1, a typical amplitude ‘a’ and a speed (gd ) t ,  where g is the acceleration of 
gravity, the equations and boundary conditions become 

( 2 . l a ,  b )  

when written in the non-dimensional form. The vertical co-ordinate measured up 
from the bottom of the fluid is z ,  and the free surface is a t  z = 1 + a y .  The gradient 
operator perpendicular to z is represented by V,, so that we may choose 

for example. The parameters appearing in equations (2.1)-(2.3) are defined by 

a = a / d ,  S = d / l ,  (2.4) 

whence a is the amplitude parameter and 6 the long-wave (or shallowness) parameter. 
The linear problem corresponding to equations (2.1)-(2.3) is obtained simply by 

setting a = 0:  this retains full (linear) dispersion, but for weak dispersion (S-t 0 )  where 
a$/& = O(Sz), we find that 

I n  other words, small amplitude long waves satisfy the general wave equationfor 
propagation on a surface. However, this equation is valid only for sufficiently short 
times: eventually nonlinear and dispersive terms cannot be neglected even when both 
a and 6 are small. The simplest approach which enables these other effects to  be exam- 
ined is to choose @! = O(a) and consider waves travelling only in one direction. Hence 
for plane waves we write 

, t = x - t ,  r = a t  (2.6) 
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and then equations (2.1)-(2.3) yield 

29, + 31175 + w2/4 T& = 0 (2.7) 

to leading order. The steady-state form of this equation is essentially as derived by 
Korteweg & de Vries (1895) for their ‘cnoidal’ waves. Throughout, we shall restrict 
ourselves to the study of waves travelling in one direction only: an initial profile on 
compact support will eventually travel in opposite directions as two independent wave 
groups. 

To produce an equation which is predominantly a balance between weak non- 
linearity and weak dispersion (in the direction of propagation), and which is also two 
dimensional, presupposes a nearly-plane wave. If we choose 

and introduce the general scaling? 

with I 
then the leading order gives 

2% + 3WE + &1/& + @pp = 0, @E = 3. (2.91 

Equations (2.9), which are equivalent to the single equstion 

(2% + 37TE +&I[& + T p p  = 0, (2.10) 

are valid for arbitrary S provided a+ 0. Clearly, a special case of (2.8) is 8 2  = O(u) for 
which t; = O(1) and q5 = O(1);  similarly, a special case of (2.10) is the (classical) plane 
KdV equation. As already indicated, we shall refer to (2.10) as the nearly-plane KdV 
equation. 

The problem of concentric waves is rather more complicated for the amplitude 
decays like r-3, where r is the radius of the wave front. Thus to obtain the appropriate 
balance for a KdV equation the amplitude must be scaled: this is to be compared with 
the plane (and nearly-plane) equations for which 7 = O(a) uniformly for all times. In  
polar co-ordinates, we introduce 

and write 

(2.11) 

with 

t We find it  convenient to use the same symbols to represent the linear characteristic, [, and 
long time variable, 7,  in all geometries. 
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Expanding in powers of A = a4/S2,  and expressing 

705 

the leading order from equations (2 .1) - (2 .3)  yields 

Equation ( 2 . 1 3 )  is the concentric KdV equation and is valid for arbitrary a, 6 provided 
only that A+O. (The amplitude parameter, a, must now be interpreted as based 
specifically on the amplitude of the wave when r = O(l ) ,  t = O(l) . )  

An equation for nearly-concentric waves can be found in a similar manner to that 
employed for the nearly -plane equation. We now introduce 

with the definitions given in ( 2 . 1 1 )  and ( 2 . 1 2 ) ,  and noting that for the nearly-plane 
KdV equation the angle subtended by the wave front at  the origin is O(a3), we intro- 
duce 

$ = @/A&, ( 2 . 1 4 )  
then as A+ 0 

(2.15) 

to leading order. Thus the angle subtended in both the nearly-plane and ‘nearly- 
concentric ’ equations is small, and essentially identical, since A here replaces a in the 
derivation of equation ( 2 . 1 0 ) ;  it  is in this sense that we have dubbed equation ( 2 . 1 5 )  the 
nearly-concentric equation. 

3. Transformations 
Since we have used simply Cartesian or polar co-ordinates, then 

r2 = x2+ y2, tan 8 = y/x. 

Hence for a nearly-plane wave front, 

r - t = x( 1 + *y2/x2 + . . .) - t ,  

but also x N t for large t when x - t = O( 1 )  and so, alternatively, 

r--t = x- t++y2 / t+  ... . 

If we now introduce the scaled variables given in ( 2 . 8 )  we obtain 

which relates the co-ordinates used in the nearly-plane equation with those in the 
23 FLY 97 
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concentric KdV equation. Of course, this transformation is only approximate but it 
does suggest that we rewrite the nearly-plane equation, (2.10), using the form? 

after one integration in E. Further, equation (3.2) is invariant under the transforma- 
tion 

which therefore produces exactly the parameter dependence required for the con- 
centric KdV equation, (2.13). In  other words, the change of variable given in (3.1) is 
exactly the distortion necessary in the far field to produce a nonlinear dispersive 
concentric wave. 

On the basis of this result, we can anticipate that there will be a corresponding choice 
of angular dependence, $, in the nearly-concentric equation which enables the plane 
wave to be recovered. Following the same approach, we write 

62. 
a2 x- t  = r - t -* t&+ ... = -[<- &p+ ...I, 

which suggests the change of variable 

in equation (2.15) ; this yields 
2H,+ 3HHi+9Hig = 0. 

Thus, although the four KdV equations can be expected to apply to four different types 
of initial data, under special conditions the four equations reduce to just two. One 
special case that we shall examine rather carefully is that which occurs when similarity 
solutions are constructed. 

4. Simple matching 
Before we turn to the more involved question of similarity solutions and their match- 

ing, we deal with the matching problem for 7+ 0 which involves functions essentially 
independent of 7 (although the nearly-concentric equation is exceptional in this 
respect). For example, in the case of the plane KdV equation (2.7) -or from (2.9)- this 
enables 7(6,7)  to be matched tof(6) as 7+0.  More formally, if we introduce the near- 
field variables 

then to leading order as a+ 0 
TTT - vxx = 0. 

A t Of course, if we include @ = ,u/r in (3.1) then we obtain the nearly-concentric KdV equa- 
tion; similarly, p = @T in (3.3) yields the nearly-plane equation. 
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Choosing right-running waves, we have the solution 

?;r(X, TI = f ( X  - T )  = f ( 5 )  
for arbitrary f ( [ )  (although for a number of reasons we would normally require 
f([) -+ 0 sufficiently rapidly as 161 + co). The matching is therefore between the near- 
field (as T --+ co) and the far-field (as 7 -+ 0 ) ,  and the net result is the posing of an initial 
value problem for the KdV equation. 

The corresponding argument for the nearly-plane equation is almost identical, 
requiring only the addition of the y variable in the form p = ay/6. To leading order, 
the one-dimensional wave equation still pertains so that 

7 = f ( - u - T , p )  =f( t ,p)  

in the near. field. Again, f is arbitrary but now it may be a function ofp; this, of course, 
describes a nearly-plane wave for the y dependence is O(a4) smaller than the depend- 
ence on [. 

The matching problem for concentric waves is also rather straightforward provided 
it is noted that 4 and 7 must be scaled to account for the geometric effect. Thus in the 
near field we make use of the variables 

whence the full problem yields 

to  leading order as A = a4/d2-+ 0. The solution of the concentric KdV equation can 
then be matched to  a solution, h(R, T ) ,  of (4.3) which satisfies 

1 i 

as R, T -+ co (for R - T fixed). The form of (4.4), for arbitrary f([), therefore presents the 
KdV equation with an appropriate initial value problem. Finally, we consider the 
nearly-concentric KdV equation (2.15) and this turns out to  be a little more difficult to 
analyse in terms of a matching problem. That this should be the case is hardly sur- 
prising when the form of (2.15) is examined for 7 + 0: it is clear that either the solution 
is independent of y? (and then we have the concentric equation) or the terms involving 
$ are exponentially small, as 7 3  0. I n  the near field, using the variables R, T and y?, 
the appropriate expansion which matches takes the form 

6 N 2 e - ~ m l ~  ( 5 An$mn(R, T ,  2 ,  $1) 9 

m=O n=O 

where p = AR. The constants Am are chosen to describe specific initial data, but such 
that A, = 0 and A, > 0 (m > 0); also $on = H , z )  (n 2 0). If $on + 0, then the 
solution is predominantly concentric and the matching to  the leading-order term 
yields a concentric initial value problem for (2.15). On the other hand, if = 0 (all 
n) the solution involves $ and grows exponentially as R increases allowing matching 
when R-T  = 5 = O(l ) ,  T = O(A-l), h = O(A4), $ = O(A4). The details of the 

23-2 
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I 
O(1) O ( E - ~ ,  A-’) 

T 

FIGURE 1. Regions of validity for the plane and concentric KdV equations: simple matching. 

near-field solution - and its matching - are rather intricate and since they apply to  
very special forms of initial data we prefer to relegate this problem to future study. 

Finally, because we need them for comparison later, let us sketch the regions of 
validity for the KdV equations and their near-field counterparts. Limiting ourselves 
t o  the 5, t (or r ,  t )  plane, which is all that  is necessary for the similarity solutions, we 
obtain the very simple sketch given in figure 1. The asymptotic regions for the plane 
KdV equation (S, T and scale o r 1 )  are seen to be identical to those for the concentric 
equation (R, T and scale A- l )  when described in this way (that is, for solutions with 
6 = O( 1) uniformly). The matching occurs in the overlap region described by [ = O( 1) 
and T +m, r+ 0 (where r = aT or AT). 

5. Similarity solutions: derivation 
We have already obtained the elementary transformations that take 

nearly-plane -+ concentric, 

nearly-concent’ric -+ plane, 

and we shall consider only the plane and concentric KdV equations hereafter, together 
with their appropriate similarity solutions. It will soon become evident that  the most 
interesting problem arises with the concentric equation, (2.13). This is the equation 
discussed by Miles (1978a), and also the one which can be analysed in the greatest 
detail : we therefore begin our discussion with (2.13). 

The similarity solution can be expressed in the form 

where 
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e 

FIGURE 2. Similarity solutions: from equation (5.3) with 4 = 0 and F ( 0 )  = _ i  ( .  . .;); from 
equation (5.3) with A = - 8 (-) ; from equation (5.14) for F = ($)A 3’ against 5 with F ( 0 )  = 1 
(---). 

and the primes denote derivatives with respect to 5. Upon multiplication by F and 

& A  

integrating once we obtain 
FF” - ; p 1 2  + qP3 - CP2) = A ,  (5.3) 

where the convenient transformation 

6 = 2+g, F = (8)SP (5.4) 

has been employed. I n  (5.3), A is the arbitrary constant of integration and if we 
require the solution for which p +  0 exponentially then A = O t .  The equation is then 
expressed as 

v”+v3-gv = 0 (5.5) 

where P = v2: this is a Painlev6 equation of the second kind (see Ince 1944; Miles 
1978b; Rosales 1978). Solutions to equation ( 5 . 5 ) ,  and hence to (5.3) for A = 0,  can be 
obtained quite easily by numerical integration and one such solution is given in 
figure 2. Of particular interest here are the asymptotic behaviours as [+ co which 
are obtained from the (linear) Airy equation1 as 

A t Exponential decay of F seems the most reasonable (physical) condition to impose, although 

$ The logarithmic term in (5.6) arises from higher-order terms, see Miles (19786) ; Ablowitz 
(5.3) can still be written as a Painlev6-2 equation even for arbitrary A .  

& Segur (1977b) .  
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and these are valid, for example, a.s 7+ 0, 5 fixed. The constants a and b are related 
since the asymptotic behaviours (5.6), (5.7) pertain to  the same solution. Ablowitz & 
Segur (1977b; see also Miles 19783) suggest that  

@=In(1+82); 6?= 3x2-3a, 8 2 =  3 x 2 4 b .  (5.8) 

This conjecture clearly satisfies the requirement that, for small amplitude, a N b and 
then the solution is everywhere proportional to A:(%). Further, (5.8) shows that 
0 < b < 00 for a solution to  exist and this has been confirmed by numerical integration 
both for v and V = iv; the equation for V is then (5.16) (see, for example, Berezin & 
Karpman 1964; Miles 1978b; Rosales 1978). We have performed a number of numeri- 
cal integrations and the estimates for 

Let us now turn to  the formulation of a second similarity solution of the concentric 
KdV equation. This is obtained directly from the inverse scattering transform for the 
nearly-plane KdV equation. Of course, it is quite beyond the scope of this paper to  give 
the details but the reader may find a, brief outline useful; more information is given in 
Johnson & Thompson (1978) although the limit eventually used here is new. 

The solution of the nearly-plane KdV equation, (2.10), can be represented by the 
inverse-scattering transform as 

and 6 agree very closely with equation (5.8). 

where 

provided functions & and B can be found. One choice, which retains a similarity form 
for F ,  is obtained by introducing the similarity variable 

f: = (5 + &k2/7) 7-4 

(compare with (3.1) and (5.1)), and then 

where k is an arbitrary constant. As it stands, (5.9) is not a similarity solution but if we 
allow k+co  then the resulting expression is defined and equivalent to (5.1) yielding 

(5.10) 

Comparing (5.10) and (5. l ) ,  and noting the transformation between the nearly-plane 
and concentric equations, we see that this produces a similarity solution of the con- 
centric KdV equation with 

(5.11) 
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Thus we have constructed a second solution to equation (5 .3)  which is explicit, al- 
though it is completely determined (that is, without the freedom of an arbitrary 
constant). It is easily confirmed that (5.11) is a solution of (5.3) when A = -8t. This 
new solution is oscillatory as c-. - oo and decays algebraically (like c-4) as 5-t + co: the 
solution appears on figure 2. To enable the matching to be performed later, we note that 

as 151 -too, for example ?-to, 6 fixed. When the matching problem for the two simi- 
larity solutions is developed, we shall be able to indicate the close affinity between the 
cases A = 0, - 8 [see equation ( 5 . 3 ) ] .  

Finally, we consider the similarity solution of the plane (classical) KdV equation 
[see equations (2.7), (2 .9 )  or (2 .10 ) ] .  This problem has been examined before; see, for 
instance, Berezin & Karpman (1964) and Rosales (1978). The form of the solution is 
exactly as used in (5.1), resulting in the ordinary differential equation 

- $F - 65F’ + 3FF‘ + &F’” = 0, (5.14) 

where 5 = f l r4 .  Transformations exist which enable equation (5.14) to be integrated 
directly: the one we employ here is due to G. B. Whitham and is used in Rosales 
(1978). Following their lead, let us set 

F = hw’ - w2, (5.15) 

where h is a constant to be determined. From (5.14) we find that 

provided h2 = 3, where di is an arbitrary constant. For a solution in which w (and 
therefore F) decays exponentially, we require 

(5.16) 
2* 

V”-CV- v3 = 0,  5 = 2 - q ,  w = - v, 
4 3  

which is a Painlev6 equation of the second kind. (This is related to (5 .5 )  by the trans- 
formation V = iv.)  A typical solution of (5.14), obt’ained by numerical integration, is 
given in figure 2 and the asymptotic behaviours (deduced directly from (5.14) or via 
(5.15)) are 

These are valid as 
the matching later. The constants A and B are related by 

+ oo, which we can interpret as 7 - t  0, fl  fixed, for the purpose of 

2 2  = -In ( 1  - 8 2 ) ,  Â  = 2% A / 3 ,  8 = 2 % B / 3 ,  (5.19) 

t This value of A turns out to be equivalent to 6 = # in the set of similarity solutions recently 
found by Airault (1979) for the plane KdV equation. 
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if the conjecture given in (5.8) is correct: for non-singular solutions of equation (5.16) 
we require 1 > 8 2  > 0 (see Miles 19783; Rosales 1978). The asymptotic behaviour of 
this solution for c+-w is an oscillation with an  amplitude which increases like 
1c1* (see figure 2 ) .  Consequently, it is not clear how this behaviour can be matched to  a 
realistic solution in the near field: we might expect some difficulties. Armed with some 
properties of the similarity solutions, we can now examine the way in which these can 
be matched to  appropriate near-field solutions. 

6. Similarity solutions : matching 
The matching process that we describe here is carefully analysed in terms of the 

relevant small parameter: A = 01*/6~ for the concentric equation (see (2.11)-(2.13)) 
and a for the plane equation. The problem for the concentric equation, which we shall 
see can be quite detailed, was first discussed by Miles ( 1 9 7 8 ~ ) .  Here, we extend the 
results to  show how the matching can be performed between certain well-defined 
regions and also that it holds for arbitrary (i.e. O(1)) amplitudes of the similarity 
solutiont: this latter point leads to  quite an involved description in the R, T plane. 
Further, we are able to match both similarity solutions in the near-field, giving 
corresponding linear solutions which turn out to differ only slightly. The matching 
problem for the plane KdV equation, which is not so rewarding, will be given in due 
course. 

The general form of a similarity solution suggests that the solution for matching 
must be expressed in a suitable multiple-scale representation. To retain the dependence 
on the similarity variable, [d, we introduce 

x = A-n[, = A-3n7 = A1--3nT, (5.20) 

and seek a solution of the full problem which is a function of x, u and T (on the surface): 
this will yield a solution valid essentially for T = O(1). The parameter n, in (5.20), 
enables various regions of the nonlinear problem to be matched, provided only that 
!$ < n < 4 (which ensures that the appropriate ordering of the terms in the full problem 
is maintained). A solution which is dependent only on x and u is possible, but this 
leads directly to  the concentric KdV equation itself if 0 < n < 4, and then only the 
similarity solution is available (because of (5.20)). I n  fact we can even permit n < 0 and 
the KdV equation still follows, but when n = Q we obtain the full equations (see (2.1)- 
( 2 . 3 ) )  bereft of any parameters whatsoever. I n  other words, the similarity solution is 
valid in a neighbourhood about 6 = 0 - which becomes narrower as T decreases - and 
when 6 and T are O(A4) the full problem is recovered with all the parameter dependence 
scaled out. This means, of course, that we shall not be able to give a complete des- 
cription of the near-field behaviour (where T = O(A4)); this can be compared with the 
simple matching process used in $ 4  where 6 = O( 1 ) in all regions. Although the close 
neighbourhood of the origin in the R, T plane must be avoided, we shall demonstrate 
that  matching is possible to  regions outside those where the similarity solution is valid. 
Further, it also follows that the matching ahead and behind the nonlinear solution must 
be treated as two quite separate problems on either side of the similarity solution. 

Now, using the variables (5.20), retaining T and expressing ( 1 [ 1 ~ ) - *  (in (5 .6)  and 

f Of course, the amplitude is necessarily fixed for our second similarity solution [given by 
(5 .  ll)]. 
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and 4 appropriately. The full problem, (2.1)- 

2Rn + +Axx, = 0, H = A--Y1+lZ) A, (5.21) 

(5.7)) in terms of x and T, we can scale 
(2 .3) ,  then yields 

to leading order, and higher-order terms give 

(5 .22)  
1 -  

2 f Z , + - H = O ,  
T 

if we write R = T + Anx in the terms R-1, R-= in the original equations. Thus from 
(5.21) and (5.22) we obtain 

(5.23) 

where A,(k) (x >< 0 )  must be found by matching (5.23) with (5.6) and (5.7) (see Miles 
1 9 7 8 ~ ) .  The matching problem is developed in two stages: first the general form of 
A,(k) must be determined and then precise constants in A ,  have to be found. 

The matching is most conveniently accomplished by expressing (5.23) in original 
variables, i.e. 6, T, and then consider A+O. This suggests the change of variable 
k = k, An-1 so that 

I = som A,(k)  eWX+&k8g) dk An-1 A,(k,  An-&) eiA-*(kd+&k81ndkl, j O m  
and we can note that Q < n < 8. Now as A +  0,  for the case 5 c 0,  we have a point of 
stationary phase where 

and it is clear that the dominant behaviour for I cannot allow (5 .23)  to match with the 
term ( - &)-1 = ( -ACT)-* in (5 .6 )  unless A -  - A- k-1 as k + m, where A- is a con- 
stant. Further, the matching is not complete if the stationary phase contribution alone 
is used. A contribution (of the same order) is required from the singular point at  k = 0 
if A- behaves like k-t as k+  0 ;  in other words matching is possible if 

A J k )  E 2- k-1. 

The constant 2- can now be found by matching in detail, using the contributions both 
from the point of stationary phase (which is trigonometric), and from the singular 
point a t  k = 0 (which gives an algebraic contribution). Using both the real and 
imaginary parts of I ,  and ensuring that the purely algebraic terms are eliminated, we 
find that (5 .23)  matches precisely if written as 

h 

(5.24) 

(Thus both 2- and the arbitrary constant 8, are chosen.) 
The technique for 6 > 0 is rather similar, although we now have a saddle in the range 

of integration together with the singularity at  k = 0. The choice of A+(k) is just 
A^+k-i and then the form of (5.23) for matching becomes 

(5.25) 



714 R. S. Johnson 

where b occurs in (5.7). Clearly (5.24) and (5.25) are identical if a = b,  but this can arise 
only for vanishingly small amplitudes and then the problem is rather trivial in that a 
linear far-field wave is matched to a linear near-field wave. Here, solutions (5.24) and 
(5 .25)  are still separated by the fully non linear similarity solution which is at T = O( 1)  
in a region 5 = O(A*).  A diagrammatic representation of this situation will be given 
later (in figure 3) when the final stage of the matching to a near-field region has been 
completed. 

The solutions given in (5.24) and (5 .25)  are multiple-scale representations valid 
where T = O( 1) )  and therefore these cannot be uniformly valid when the distance (6) 
and time ( T )  scales are of the same size. In terms of n, this occurs when both 5 and T 
are O(An)  or, equivalently, when R and T are O(An) .  This region is still outside the 
similarity solution (which is where 6 = O(Aa(n+1)) if T = O(An)) provided n < 4. Thus 
we introduce 

R = AnR', T = AnT' (Q < n < i), 
whence, upon scaling 7 and 4, it easily follows that to leading order 

(5.26) 

the linear concentric wave equation, so if we consider the solution which is initially 
zero everywhere and which also is singularity free as R'-+ 0 (Miles 1 9 7 8 ~ ) )  then 

H' = jOm A'(k) sin (kT') J,(kR') dk.  (5 .27)  

This solution is to match with (5.24) or (5 .25 ) ,  depending on whether R-T '  < 0, 
R'-T' > 0, respectively. Writing (5.27) in the original variables R, T and letting 
A -+ 0 we see that the contribution to the integral from the region where kR/A" = O( I )  
is O(An) but from the rest of the range it is O(A1.1. Thus the dominant contribution can 
be obtained by expanding J, for large argument, always provided that A'(k) is nowhere 
singular. Thus from (5 .27 )  we find that 

H I -  (=) 2An 1 j o m y s i n  
kR 7~ 

whence matching to the region where R - T = 

only the term in cos (kC/An+ an) and then A'(k) is just a constant, 
= O(An), T and R + T large, requires 

a b 
A' = - (t < 0); A' = - (6 > 0). 

4 2  n J 2  
(5.28) 

(As Miles points out, the solution (5.27) with A' given by (5 .28 )  and a - b corresponds 
to the problem of linear concentric waves emanating from a point source at R = 0; the 
volumetric flow rate of the source is proportional to a.) In our presentation of the 
problem, the matching is to the fully nonlinear solution and also the solution (5.27) is 
not valid a t  t,he origin. This is because when n = 4, the scalings used to define R' and 
T' recover the full equations, (2.1)-(2.3), with all terms of comparable size. Thus 
solution (5 .27)  is to be matched to the full problem in a neighbourhood O(A1) of the 
origin; this we cannot do analytically. 

A diagrammatic representation of the various regions of validity is given in figure 3, 
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O(A-') 
T 

FIGURE 3. Regions of validity for the matching of the similarity solutions of tho concentric KdV 
equation: the matching is indicated by the arrows and the similarity solution exists in the 
region O ( A N )  about R = T .  

where we have used the interpretation developed here (although others are possible). 
The matching is indicated as being from a region of the non-linear similarity solution 
into two linear regimes and thence into the full problem near the origin. TWO such paths 
are shown, one from ahead and one from behind - but both always separated by - the 
similarity solution: the two matched solutions come together in the same region at  the 
origin. The complexity of figure 3 should be compared with the simplicity of figure 1,  
where 5 = O( I )  in all regions. 

We can now consider the matching of our second similarity solution, (5.10), with 
asymptotic behaviours (5.12) and (5.13). The procedure is exactly as given above, 
leading in the first instance to solution (5.23) which must be matched to the new 
solution. It is clear, however, that  there is an important difference here, particularly 
when 6 > 0 ;  the singularity at k = 0 produces exactly the required algebraic behaviour 
and so it is the trigonometric contribution which must vanish in this case. The solution 
which corresponds to (5.24) and (5.25) is then given by 

.. 2 2 4  
H = + - (-) 1; k-4 cos (kx +g 6 4  (T - T) dk,  

- 3  ~ T T  
(5.29) 

where the ordering of the signs is as x < 0, x > 0. Two important aspects of this solu- 
tion are immediately evident. First, there is no amplitude parameter which allows the 
solution for both x < 0 and x > 0 to correspond: this is due to  the essential nonlinearity 
of the similarity solution [cf. a N b in (5.24) and (5.25)]. Also, the different combination 
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of dominant terms which gives rise to the correct matching requires the arbitrary 
constant, Oo, to be -in [again cf. (5.24) and ( 5 . 2 5 ) ] .  I n  fact this latter point shows that 
the matching to  the concentric wave problem (5.26) now requires the Yo Bessel 
function. The matching does follow as before, even though Yo diverges as R' -+ 0,  since 
the dominant contribution still occurs for R'+ 00; thus corresponding to (5.27) we 
find that 

H' = + - sin ( k T ' )  Y,(kR') dk. (5.30) 

Finally, in a region O(A9) about the origin we obtain the full problem and then the 
various regions are exactly as depicted in figure 3. 

To conclude this discussion, we turn our attention to  the similarity solution of the 
plane (classical) KdV equationgiven by (5.1), with (5.14), (5.15) and (5.16),  and which 
has the asymptotic behaviours (5.17), (5.18).  We can use the same prescription as for the 
concentric equation to examine the solution in the linear r&gimes, that  is, we introduce 
x and (T as defined in (5 .20 )  but with cz replacing A. However, i t  is easy to see that if we 
seek a multiple-scale solution in terms of x, u and T [where T is now given by (4.1)], 
dependence on T is necessarily absent and then we obtain the original KdV equation 
(if n < +). When n = +, the full equations defining the water-wave problem are once 
again recovered, with no simplification available. I n  other words, there is no asympto- 
tic region in which a linear problem exists. That this should be the case for the plane 
KdV equation is really not so surprising. The reason can be traced to  the difference in 
amplitude variation for the concentric KdV equation. I n  this latter equation, the 
amplitude varies according as x and T vary, and the T dependence arises solely from 
the geometric effect. Of course, this is absent in the plane KdV equation and so the 
amplitude is governed by the scaling associated with x (and (T) only, which consti- 
tutes an invariant transformation of the plane KdV equation. The sketch of the various 
regions is therefore similar to  that given in figure 3 provided that the matching ' arrows ' 
are deleted; we have just the region of validity of the similarity solution emanating 
from an O(a4) neighbourhood of the origin. 

Although there is no formal asymptotic region where a linear problem can be written 
down, it would be most instructive if we could - in some sense - compare the plane and 
concentric KdV equations. The one avenue open to us is to employ the device adopted 
by Miles ( 1 9 7 8 ~ ) :  we match in the linear limit of the plane KdV similarity solution, 
i.e. A - B.  This will enable us to  compare the two similarity solutions on an equal 
footing. (Naturally, we must use only (5.26) or (5.27), with a - b, for comparison; 
solution (5.29) is inadmissable.) The argument follows precisely that given above; if 

then 

- yo* 

x = &n, (T = T@--3*, 12 < &, 

k sin (kx + Qk%) dk, f i  = ~ ~ ~ 7 ,  (5.31) 

matches precisely with (5.17) and (5.18) if A - R. If S and T are the same size, i.e. 
O(an) ,  then the solution is an arbitrary funct'ion of (S - T) = x which clearly 
matches with (5.31) as a+O; in fact', this means that (5.31) is uniformly valid as 
(T-+ 0. As we have already found, such a simple conclusion does not apply to (5.26) or 
(5.27) even when a - b. Now setting (T = 0 in (5.31), we see that the solution in an 
O(an) neighbourhood of the origin is proportional to the generalized function Sf( .  ) 
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propagating to  the right: this is the analogue of the corresponding problem for the 
concentric equation. 

7. Discussion 
The classical problem in water-wave theory has been examined from a point of view 

which takes as its central theme the existence of various KdV-like equations. Four 
such equations have been obtained: two expressed in Cartesian co-ordinates and two in 
plane polar co-ordinates. The main thrust of the work has then been to examine these 
equations (and their solutions) in terms of the underlying water-wave problem. This 
enables rather elementary transformations to  be written down which show, for 
example, that for a certain class of solution only the plane and concentric equations 
are relevant. 

The essential idea associated with the relation between the various KdV equations 
and the water-wave problem resolves itself into a discussion of the initial value 
problem. That is, given the classical equations for surface waves written using an 
appropriate non-dimensional scheme, what type of initial profile is required to  gen- 
erate a certain solution of a KdV equation! The answer to this question must be 
obtained in two stages: first, the relevant scaling of the near-field region is to  be deter- 
mined in terms of the scalings which define the KdV equation. Actually, the form of 
solution itself, for example similarity, may suggest the scalings, and then the second 
stage is quite evidently to choose the correct functional form of the initial disturbance. 
I n  the case of the non-similarity solutions this is quite straightforward for, as T + 0,  
the near-field problem is substantially independent of T. This is precisely true for both 
the plane and nearly-plane equations, and if the geometric term T - f  is ignored in the 
solution of the concentric equation, i t  is true also for this problem. However, the 
equation which we have dubbed the nearly-concentric KdV equation is not so easily 
managed. It was mentioned that for this equation the near-field behaviour had to be 
represented in terms of a rather special exponential decay as T + 0: this particular 
avenue was not pursued in detail for our main interest was in the similarity solutions. 

If similarity solutions only are considered then we can limit our discussion to the 
plane (classical) KdV equation, and the concentric KdV equation. I n  fact, i t  turned- 
out that  the latter equation was by far the most rewarding. Extending the work of 
Miles ( 1  978a) ,  we have seen how the matching problem can be described in various 
regions of the physical plane. Also, the similarity solution itself was defined in a region 
which emanated from a neighbourhood of the origin where the full problem arose. In  
view of this the matching problem could not be extended back to the origin, and also 
the matching conditions had to be applied on one side or the other of the similarity 
solution. Nevertheless, our results agree in their essentials with the work of Miles if we 
consider that  similarity solution which has a free constant (an amplitude) and let the 
amplitude tend to zero. A typical solution of this type was described, as was the new 
solution which decayed algebraically ahead of the wave front (see figure 2) .  This 
second solution was completely determined, but in other respects the matching prob- 
lem was very similar. 

If we compare the two similarity solutions in the linear regimes then we find that 
they each match onto one of the two available solutions of the linear concentric wave 
equation. The solution which decays exponentially ahead of the wave matches to the 
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J,, Bessel function, whereas the solution with algebraic decay requires the Yo Bessel 
function. Both these solutions are then to match onto the appropriate solutions of the 
full equations sufficiently close to  the origin. Of course, it had been our intention to  
characterize the various problems in terms of the precise initial data required for each 
one. This we cannot satisfactorily complete unless we allow the amplitude - where 
possible - to tend to  zero. Such a procedure destroys the essential nonlinearity of the 
solution, but for one similarity solution of the concentric KdV equation it does allow a 
comparison with the corresponding solution of the plane BdV equation. 

The classical KdV equation has a well documented similarity solution going back a t  
least as far as 1964 (Berezin & Karpman). We have shown that for the water-wave 
equations this solution cannot be (formally) matched to a suitable linear problem unless 
the amplitude is small. Also, the same difficulty over the full equations being valid in a 
neighbourhood of the origin further complicates the issue. Certainly, for small ampli- 
tudes, both solutions are generated by suitable source-like behaviour a t  the origin; 
this is the usual way in which similarity solutions are produced in a whole range of 
mathematical problems. 

I n  conclusion, we can expect that  other physical situations which give rise to  KdV 
equations - or other evolution equations from inverse scattering theory - can be 
described in the manner outlined here. I n  fact there may be other similarity solutions 
available for the water-wave problem, although none are known to date. [The inverse 
scattering theory for the plane KdV equation does not seem to allow a similarity 
solution in closed form (see Ablowitz & Segur 1977b).] Similarity solutions and the 
corresponding matching problems would appear to be a field worthy of further study. 

The author would like to express his thanks to Professor N. C. Freeman for many 
useful discussions on the work developed here. Also thanks must go to  Dr C. A. Jones, 
of this department, for providing one of his programmes for the numerical integration 
of the similarity solutions: the computations were performed on the IBM 370/168 
machine a t  the University of Newcastle upon Tyye. 
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